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Abstract. This paper is concerned with the optimal consensus control of

discrete-time multi-agent systems with multiplicative noise. The sufficient con-

dition for the existence of a parameterized generalized algebraic Riccati equa-
tion (ARE) is firstly developed. Then, the sufficient condition on the control

gain, the communication topology graph and the critical value of parameterized

generalized ARE’s parameter for mean square consensus are derived. Finally,
the explicit control strategy is given to to guarantee consensus and minimize

the performance index simultaneously.

1. Introduction. In the past twenty years, the consensus problem of multi-agent
systems (MASs) has been paid much attention. In [22], Vicsek et al. demonstrated
an interesting phenomenon: particles exhibit collective motion at high particle den-
sity and low localization noise. Jadbabaie et al. provided a theoretical explanation
of the Vicsek model in [10]. Then, Olfati-Saber and Murray [16] considered first-
order integrator dynamics and two control protocols were designed to solve the con-
sensus problems for continuous-time and discrete-time systems, respectively. Ren
[18] and He et al. [7] proposed consensus algorithms for second-order integrator
dynamics and higher-order integrator dynamics, respectively. Different from pre-
vious unsigned graphs, Altafini [1] studied the consensus problem of signed graphs
and showed that the system achieves bipartite consensus when the information ex-
change topology is structurally balanced. Additionally, Hu et al. [8] investigated
the bipartite consensus of MASs with time delays in the presence of antagonistic
interactions. Now, MASs have been widely used in various fields, such as sensor
network, clustering of social insects, and unmanned aerial vehicles [32].

Note that the above significant progress addressed the consensus problem of per-
fect models, where each agent can obtain precise information from their neighbors.
However, in practical applications of MASs, uncertain communication environments
and measurement noises are inevitable [34]. Therefore, it is necessary to consider
measurement noises when investigating multi-agent consensus problems. For MASs
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with multiplicative noise, Li et al. [15] gave some stochastic consensus conditions
under connected graph and provided the upper and lower bounds for convergence
rate. The consensus problem of continuous-time MASs in the presence of both
communication latency and measurement noise was investigated in [35]. Zong et
al. [33] gave the upper bound for delay terms to ensure pth moment exponen-
tially stable. In [4] and [5], Djaidja et al. respectively studied the leader-following
consensus of MASs with and without delay. For MASs driven by additive noise,
in [13], Li and Zong derived some sufficient conditions to ensure stochastic weak
group consensus, stochastic strong group consensus and hybrid group consensus,
respectively. They further considered hybrid group consensus subjected to both
communication latency and additive noise in [14]. In the presence of additive noise
and time delay, Djaidja et al. [6] investigated the leader-following consensus. The
previous work [36] established the consensus of both discrete-time first-order and
second-order MASs with multiplicative noises. However, for discrete-time general
linear stochastic MASs, little is known about the control design theory since the
corresponding parameterized generalized algebraic Riccati equation (ARE) has not
been well established.

Optimization problems of stochastic systems and MASs also attracted some at-
tention. For single stochastic system, Zhang et al. [27] solved the optimal control
problem of discrete-time stochastic systems with delay and measurement noise.
Huang et al. [9] proposed an optimal controller for discrete-time systems driven by
multiplicative noise based on an ARE. Wang et al. [24] investigated the optimal
problem of single system involving by both state and control dependent multiplica-
tive noise and input delay. For MASs, Movric and Lewis [12] examined the opti-
mality of some distributed cooperative control protocols by a positive semi-definite
quadratic performance criterion. Zhang et al. [31] studied the distributed optimal
control of MASs with general linear dynamics. Jin et al. [11] investigated the dis-
tributed optimal consensus of stochastic continuous-time MASs with multiplicative
noises. It is seemingly true that ARE for single discrete-time stochastic system can
be used to design the optimal control of discrete-time stochastic MASs. However,
it is worth noting that the decoupled subsystems of MASs depend on the eigenva-
lues of the Laplace matrix of communication graph. Thus, the classical ARE can
not be used for stochastic MASs. This motivates us to develop optimal consensus
control of discrete-time stochastic MASs with multiplicative noise by establishing a
parameterized generalized ARE.

Motivated by the above discussion, this work studies the optimal consensus con-
trol of discrete-time MASs with multiplicative noise. Different from [27, 9], where
the classical stochastic ARE was investigated, we firstly propose a parameterized
generalized ARE with a parameter. By a recursive scheme, we establish the suffi-
cient condition for the existence of positive definite solution to the parameterized
generalized ARE. Moreover, the domain of the parameter is also obtained for pa-
rameterized generalized ARE to have the positive definite solution. Then, we give
the control design of consensus control of MASs with multiplicative noises based
on the relative measurements resorting to the parameterized generalized ARE. The
explicit relationship between the control gain and the parameter in parameterized
generalized ARE is revealed. Finally, the optimal consensus control strategy is
developed to minimize a cost function based on the absolute state and relative
measurements.
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The rest of this paper is organized as follows. Section 2 gives the formulation
of the optimal consensus problem and some preliminaries, mainly the algebraic
graph theory. Section 3 investigates the sufficient condition for the parameterized
generalized ARE to have a positive definite solution. Section 4 gives the mean
square consensus of the MASs. Section 5 applies the consensus theory to obtain the
optimal consensus control design. Some simulation results are presented in Section
6. Section 7 concludes the paper.

Notation: Rn denotes n-dimensional column vectors. Rn×m denotes the space
of n × m real matrices. 1N stands for the n-dimensional unit column vector. In
is the identify matrix. A′ denotes the transpose of A. M > 0 stands for the
symmetric matrix M is positive-definite. M ≥ 0 stands for the symmetric matrix
M is positive-semidefinite. E[X] is the mathematical expectation of X. Range (M)
denotes the range of matrix M . ⊗ denotes the Kronecker product. G† denotes the

Moore-Penrose inverse [17, 20], satisfying GG†G = G,G†GG† = G†,
(
GG†)′ = GG†

and
(
G†G

)′
= G†G.

2. Preliminaries and problem formulation.

2.1. Algebraic graph theory. We shall restrict our discussions mainly to the
connected undirected graph G = (V,M), where V denotes the set of notes and
the adjacency matrix M = [aij ] ∈ RN×N . If any two distinct agents of G can
be connected via a path, then we call an undirected graph G connected. Also,

di =
∑N

j=1 aij is the degree of i. The Laplacian matrix is L = D − M, where

D = diag {d1, · · · , dN}. We denote 0 = λ1 ≤ · · · ≤ λN as the eigenvalues of L. It is
well known that L always has a zero eigenvalue.

2.2. Problem formulation. Consider a MAS with N agents. The dynamics of
agent i is:

xi(k + 1) = [Axi(k) +Bui(k)] + [Cxi(k) +Dui(k)]w(k), k = 0, 1, ..., (1)

where i = 1, ..., N , xi(k) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×n, D ∈ Rn×m,
ui(k) ∈ Rm is the input control of the ith agent and {w(k), k = 0, 1, 2...} is a
sequence of real random variables defined on a complete probability space (Ω,F ,
{Fk}k≥0,P), which satisfies E{w(k)} = 0 and E{w2(k)} = 1. LetX(k) = [x′

1(k), · · · ,
x′
N (k)]′. The cost function is given by

Ji = E

∞∑
k=0

[x′
i(k)Qxi(k) + u′

i(k)Rui(k)] , (2)

where Q and R are symmetric positive semidefinite matrices with appropriate di-
mensions. For the MAS (1), we define the admissible control set

Uad =

{
u(k) | u(k) ∈ L2

F (Rm) and E

∞∑
k=0

∥u(k)∥2 < ∞

}
.

The main objective of this paper is to find a distributed control protocol ui(k) ∈
Uad such that the MAS (1) achieve consensus and minimize the cost function∑N

i=1 Ji. Because of the existence of measurement noise, the consensus is con-
sidered in mean square sense, which is defined as follows.

Definition 2.1. The MAS (1) is said to achieve mean square consensus if lim
k→∞

E ∥xj(k)− xi(k)∥2 = 0,∀i, j = 1, . . . , N , for any given initial value X(0).
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3. A parameterized generalized algebraic Riccati equation. Algebraic Ric-
cati equation is an important tool in control design for feedback stabilization of
deterministic linear systems [2, 29] and stochastic systems [11, 23]. In this work, we
also resort to a parameterized generalized ARE to design a control such that the

mean square consensus is achieved and the cost function
∑N

i=1 Ji is minimized.
In this section, we consider the following parameterized generalized ARE,

0 = A′PA+ C ′PC − γ (A′PB + C ′PD)

× (Im +D′PD +B′PB)
−1

(B′PA+D′PC) + In − P, γ ∈ (0, 1). (3)

Firstly, we need to find the sufficient condition for the above parameterized gener-
alized ARE to have a solution. Before establishing the existence of the solution P,
we consider the operator

Hγ(X) = A′XA+ C ′XC + In
−γ (A′XB + C ′XD) (Im +B′XB +D′XD)

−1
(B′XA+D′XC) . (4)

We also define

φ(K,X) = (1− γ)(A′XA+ C ′XC + In) + γ(M ′
1XM1 +M ′

2XM2 + In +K ′K)

and

Ψ(K,X) = M ′
1XM1 +M ′

2XM2 + In +K ′K,

where M1 = A+BK,M2 = C +DK. We obtain following lemmas.

Lemma 3.1. The following statements are true.
1) If 0 < γ1 < γ2 < 1, then Hγ1

(X) > Hγ2
(X).

2) If X ≥ Y , then Hγ(X) ≥ Hγ(Y ), γ ∈ (0, 1).

Proof. 1) Note that (A′XB + C ′XD) (Im +B′XB +D′XD)
−1

(B′XA+D′XC) ≥
0. Then,

Hγ1
(X) = A′XA+ C ′XC + In

−γ1 (A
′XB + C ′XD) (Im +B′XB +D′XD)

−1
(B′XA+D′XC)

≥ A′XA+ C ′XC + In

−γ2 (A
′XB + C ′XD) (Im +B′XB +D′XD)

−1
(B′XA+D′XC)

= Hγ2(X).

2) If X ≥ Y , then Hγ(X) = φ(KX , X) ≥ φ(KX , Y ) ≥ φ(KY , Y ) = Hγ(Y ).

Lemma 3.2. The following statements 1-3 are equivalent.
1) ∃X > 0 such that X > Hγ(X).
2) ∃K,X > 0 such that X > φ(K,X).
3) ∃V and 0 ≤ W ≤ I such that the following LMI holds:

Ωγ(W,V ) =


W

√
γE′ √

γF ′ √
1− γWA′ √

1− γWC ′
√
γE W√
γF W√

1− γAW W√
1− γCW W

 > 0,

(5)
where γ ∈ (0, 1), E = AW +BV and F = CW +DV .
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Proof. 1) ⇒ 2). Letting K = KX = − (Im +D′XD +B′XB)
−1

(B′XA+D′XC),
we can easily obtain X > Hγ(X) = φ(K,X).

2) ⇒ 1). Note that argminKφ(K,X) = argminKΨ(K,X). Since X ≥ 0, it
follows that Ψ(K,X) is quadratic and convex in the variable K. Therefore, we can

obtain the minimum value by solving ∂Ψ(K,X)
∂K = 0 and one easily finds KX =

− (Im +D′XD +B′XB)
−1

(B′XA+D′XC). Then, we have X > φ(K,X) ≥
minK φ(K,X) = φ (KX , X) = Hγ(X) for any K.

2) ⇔ 3). From X > φ(K,X) = (1− γ) (A′XA+ C ′XC + In)+γ(M ′
1XM1 +

M ′
2XM2 + In + K ′K), we obtain X − (1− γ) (A′XA+ C ′XC)> γ(M ′

1XM1 +
M ′

2XM2 + K ′K) + In ≥ In > 0. Using the Schur complement decomposition,
we have

θ =


X

√
γM ′

1
√
γM ′

2

√
1− γA′ √

1− γC ′
√
γM1 X−1

√
γM2 X−1

√
1− γA X−1

√
1− γC X−1

 > 0.

This is equivalent to
X−1 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 θ


X−1 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I



=


X−1√γX−1M ′

1
√
γX−1M ′

2

√
1− γX−1A′ √

1− γX−1C ′
√
γM1X

−1 X−1

√
γM2X

−1 X−1
√
1− γAX−1 X−1

√
1− γCX−1 X−1

 > 0.

Letting W = X−1 > 0, V = KX−1, E = AW + BV and F = CW + DV , the
previous LMI is equivalent to

Ωγ(W,V ) =


W

√
γE′ √

γF ′ √
1− γWA′ √

1− γWC ′
√
γE W√
γF W√

1− γAW W√
1− γCW W

 > 0.

Since Ωγ(αW,αV ) = αΩγ(W,V ), W can be restricted to W ≤ I. The proof is
complete.

Lemma 3.3. Define L(X) = (1 − γ) (A′XA+ C ′XC) + γ (M ′
1XM1 +M ′

2XM2),
where M1 = A + BK,M2 = C + DK. Then, if there exists a matrix X̄ > 0 such
that X̄ > L(X̄), the following statements are true.

a): For all V ≥ 0, limk→∞ Lk(V ) = 0.
b): The sequence Zk+1 = L (Zk) + U is bounded for all U ⩾ 0 and any initial

value Z0 ≥ 0.

Proof. It can be seen that L(X) ≥ 0 for all X ≥ 0. Also, if X ≥ Y , we have
L(X) ≥ L(Y ). For given V ≥ 0, we choose rV ∈ [0, 1) and bV ≥ 0 such that
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L(X̄) < rV X̄ and bV X̄ ≥ V . Then, it can be shown that

0 ≤ Lk(V ) ≤ bV L
k(X̄) < bV r

k
V X̄,

which implies limk→∞ Lk(V ) = 0, that is, the statement a) holds. Also, we have

Zk = Lk (Z0) +

k−1∑
t=0

Lt(U)

≤

(
bZ0

rk +

k−1∑
t=0

bUr
t
Z0

)
X̄

≤
(
bZ0r

k
Z0

+
bU

1− rZ0

)
X̄

≤
(
bZ0

+
bU

1− rZ0

)
X̄,

which implies the statement b).

Based on the lemmas above, we now establish the existence of the positive so-
lution to parameterized generalized ARE (3) by constructing the corresponding
recursive scheme,

Pt+1 = A′PtA+ C ′PtC + In − γ (A′PtB + C ′PtD)

× (Im +B′PtB +D′PtD)
−1

(B′PtA+D′PtC) , t = 0, 1, 2... (6)

Then, we have Pt+1 = Hγ (Pt) = Ht+1
γ (P0) from the definition of Hγ(·), where

Ht+1
γ (P0) represents the value after t+ 1 iterations from P0.

Theorem 3.4. If there exist matrices K̄ and X̄ > 0 such that X̄ > φ(K̄, X̄), then
the Riccati iteration (6) converges for any initial condition P0 ≥ 0, and the limit is
independent of P0, denoted by lim

t→∞
Pt = lim

t→∞
Ht

γ(P0) = P, i.e., the parameterized

generalized ARE (3) admits a solution.

Proof. We first prove that Pt = Ht
γ(P0) is bounded for any P0 ≥ 0, i.e., Pt ≤ SP0

for certain SP0
> 0, if there exist matrices K̄ and X̄ > 0 such that X̄ > φ(K̄, X̄).

Let L̄(X) = (1 − γ)(A′XA +C ′XC) + γ
(
M̄ ′

1XM̄1 + M̄ ′
2XM̄2

)
, where M̄1 = A +

BK̄, M̄2 = C +DK̄. We can see that

X̄ > φ(K̄, X̄) = L̄(X̄) + In + γK̄ ′K̄ > L̄(X̄).

Consequently, L satisfies the condition of Lemma 3.3. We have

Pt+1 = Hγ (Pt) ⩽ φ
(
K̄, Pt

)
= L (Pt) + In + γK̄ ′K̄ =: L (Pt) + U,

where U = In + γK ′K > 0. From Lemma 3.3, Pt is bounded.
Now, we show that the Riccati iteration (6) converges for any initial condition

P0 ≥ 0 by three steps.
Firstly, we initialize the Riccati iteration (6) at U0 = 0, i.e., Uk = Hk

γ (0). One
can see that 0 = U0 < U1 = In and U1 = Hγ (U0) < Hγ (U1) = U2 from Lemma
3.1. Then, we have 0 = U0 < U1 < U2 < · · · < SU0

. One can see that the sequence
converges and the limit is denoted by limk→∞ Uk = P̄ , that is, the fixed point P̄
satisfies P̄ = Hγ(P̄ ).
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Then, we initialize the Riccati iteration (6) at T0 ⩾ P̄ . Define L̃(T ) = (1 −
γ)(A′TA+C ′TC)+γ(M ′

1TM1+M ′
2TM2), where M1 = A+BKP̄ ,M2 = C+DKP̄

and KP̄ = −
(
Im +D′P̄D +B′P̄B

)−1 (
B′P̄A+D′P̄C

)
. Then, we have

P̄ = Hγ(P̄ ) = L̃(P̄ ) + In + γK ′
P̄KP̄ > L̃(P̄ ).

Consequently, L̃ satisfies the condition of Lemma 3.3 and we have limk→∞ L̃k(T ) =
0, ∀T ⩾ 0. One can see that T1 = Hγ (T0) ⩾ Hγ(P̄ ) = P̄ . Further we obtain
Tk = Hk

γ (T0) ⩾ P̄ , ∀k > 0. Observe that

0 ⩽
(
Tk+1 − P̄

)
= Hγ (Tk)−Hγ(P̄ )

= φ (KTk
, Tk)− φ

(
KP̄ , P̄

)
⩽ φ(KP̄ , Tk)− φ(KP̄ , P̄ )

= (1− γ)
[
A′ (Tk − P̄

)
A+ C ′ (Tk − P̄

)
C
]

+γ
[
M ′

1

(
Tk − P̄

)
M1 +M2

′(Tk − P̄ )M2

]
= L̃

(
Tk − P̄

)
.

Thus, we have 0 ≤ limk→∞(Tk+1 − P̄ ) ≤ limk→∞ L̃
(
Tk − P̄

)
= 0, which implies

that the sequence Hk
γ (T0) also converges when initializing at T0 ⩾ P̄ .

Finally, we initialize the Riccati iteration (6) at any given P0 ⩾ 0. Denote U0 = 0,
T0 = P0 + P̄ and U0 ⩽ P0 ⩽ T0. Then, we have Hγ (U0) ⩽ Hγ (P0) ⩽ Hγ (T0) from
Lemma 3.1, i.e., U1 ⩽ P1 ⩽ T1. Further we obtain Uk ⩽ Pk ⩽ Tk,∀ k ≥ 0.
Therefore, limk→∞ Pk = P̄ . The proof is complete.

Theorem 3.5. Assume that γ∗ = argminγ [∃P̂ > 0 | P̂ > Hγ(P̂)] ∈ (0, 1) is well
defined. Then, the parameterized generalized ARE (3) admits a solution P > 0 for
any γ ∈ (γ∗, 1).

Proof. When γ = γ∗, there exists a matrix P̂ > 0 such that P̂ > Hγ∗(P̂). From
Lemma 3.2, there exists matrices K,X > 0 such that X > φ(K,X). Therefore, we
obtain that Pt+1 = Hγ (Pt) converges from Theorem 3.4, that is, the parameterized

generalized ARE (3) admits a solution. If γ = γ2 ∈ (γ∗, 1), then Hγ∗(P̂) > Hγ2
(P̂)

from Lemma 3.1 and we have P̂ > Hγ∗(P̂) > Hγ2(P̂). Similar to the case of
γ = γ∗, we obtain that the parameterized generalized ARE (3) admits a solution,
which completes the proof.

Remark 3.6. Combining Theorem 3.5 and Lemma 3.2, γ∗ can be numerically
computed by γ∗ = argminγ{Ωγ(W,V ) > 0, 0 ≤ W ≤ I}, where Ωγ(W,V ) is defined
in (5).

Remark 3.7. Note that Theorem 3.5 requires γ∗ ∈ (0, 1) to be well defined. This
together with Theorem 3.4 implies the existence of the positive definite solution
P . In fact, the existence condition γ∗ ∈ (0, 1) depends on the coefficient matrices
A,B,C,D. To see it clearly, we consider the case B = D,C = 0, that is, the
stochastic system has the following form

x(k + 1) = Ax(k) +Bu(k) +Du(k)w(k). (7)

It is not difficult to obtain its ARE

P = A′PA+ In − 1

2
A′PB(Im +B′PB)−1B′PA, γ =

1

2
. (8)

It is proved in [19, Lemma 5.4] for unstable A that if (A,B) is controllable and
Πi|λi(A)u| < 2, then (8) has the unique P > 0, where λu

i (A) are the unstable
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eigenvalues of A. Without the two conditions, (8) may not admit the positive
definite solution for γ ∈ (0, 1), and then γ∗ is unavailable.

4. Mean square consensus. In this section, we will derive the condition for mean
square consensus so as to solve the optimal consensus control problem in the next
section.

We use the classical feedback control protocol

ui(k) = K̄

N∑
j=1

aij (xj(k)− xi(k)) , (9)

where K̄ ∈ Rm×n is the gain matrix to be designed.
Applying Theorem 3.5 produces the following theorem, which gives sufficient

condition for MAS (1) under (9) to achieve mean square consensus.

Theorem 4.1. If γ∗ = argminγ [∃P̂ > 0 | P̂ > Hγ(P̂)] ∈ (0, 1) is well defined,
then for any 1 > γ ≥ γ∗, mean square consensus can be achieved under the control
protocol (9) with consensus gain

K̄ = k (Im +D′PD +B′PB)
−1

(B′PA+D′PC) (10)

where

−
√
1− γ

λ2
+

1

λ2
≤ k ≤

√
1− γ

λN
+

1

λN
, (11)

P satisfies the parameterized generalized ARE (3).

Proof. With the protocol (9), the closed-loop subsystem takes the form

xi(k + 1) =

Axi(k) +BK̄

N∑
j=1

aij (xj(k)− xi(k))


+

Cxi(k) +DK̄

N∑
j=1

aij (xj(k)− xi(k))

w(k). (12)

We can rewrite the above equation as

X(k + 1) =
[
IN ⊗A− L⊗ (BK̄)

]
X(k) +

[
IN ⊗ C − L⊗ (DK̄)

]
X(k)w(k).

Denote consensus error

δi(k) = xi(k)−
1

N

N∑
m=1

xm(k), (i = 1, 2, · · · , N)

and consensus error vector δ(k) = [δ′1(k), · · · , δ′N (k)]
′
. We have

δ(k) =

[(
IN − 1

N
1N1′

N

)
⊗ In

]
X(k),

which implies

δ(k + 1) =
[
IN ⊗A− L⊗ (BK̄)

]
δ(k) +

[
IN ⊗ C − L⊗ (DK̄)

]
δ(k)w(k).

Define the unitary matrix Ψ =
[

1N√
N
, ϕ2, · · · , ϕN

]
, where ϕi is the unit eigenvector of

L associated with the eigenvalue λi, i.e., ϕ
′
iL = λiϕ

′
i, ϕi ∈ RN . L can be transformed
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into a diagonal form Ψ′LΨ = diag {0, λ2, · · · , λN}. Denote δ(k) = (Ψ⊗ In) δ̃(k) and

δ̃(k) =
[
δ̃′1(k), · · · , δ̃′N (k)

]′
. Then, we have δ̃1(k) = 0 and

δ̃(k + 1) = (Ψ⊗ In)
′
δ(k + 1)

=
[
IN ⊗A− diag

{
0, λ2BK̄, · · · , λN BK̄}]δ̃(k)

+
[
IN ⊗ C − diag

{
0, λ2DK̄, · · · , λNDK̄

}]
δ̃(k)w(k).

Letting ξ(k) =
[
δ̃′2(k), · · · , δ̃′N (k)

]′
, we have

ξ(k + 1) = R1ξ(k) +M1ξ(k)w(k), (13)

where R1 = IN−1⊗A−∧⊗BK̄,M1 = IN−1⊗C−∧⊗DK̄, ∧ = diag {λ2, · · · , λN}.
Consider the following Lyapunov function

V (k) = ξ′(k) (IN−1 ⊗ P) ξ(k), (14)

where P satisfies the parameterized generalized ARE (3). Substituting (13) into
(14) and taking the expectation on both sides of (14), we have

EV (k + 1) = E {ξ′(k) [R′
1 (IN−1 ⊗ P)R1 +M ′

1 (IN−1 ⊗ P)M1]ξ(k)} , (15)

which implies

EV (k + 1)− EV (k) = E {ξ′(k) [R′
1 (IN−1 ⊗ P)R1

+M ′
1 (IN−1 ⊗ P)M1 − IN−1 ⊗ P]ξ(k)} .

We multiply both sides by βk+1, where β > 1. Then, we have

βk+1EV (k + 1)− βkEV (k) ⩽
(
βk+1 − βk

)
EV (k) + βk+1Eξ′(k)R2ξ(k),

where R2 := R′
1 (IN−1 ⊗ P)R1 + M ′

1 (IN−1 ⊗ P)M1 − IN−1 ⊗ P. Then, we can
rewrite the above formula as

βk+1EV (k + 1) ⩽ EV (0) +

k∑
s=0

(
βs+1 − βs

)
EV (s) +

k∑
s=0

βs+1Eξ′(s)R2ξ(s).

It can be seen that EV (s) ⩽ ∥P∥∥ξ(s)∥2. Thus,

βk+1EV (k + 1) ⩽ EV (0) +
(
1− β−1

)
∥P∥

k∑
s=0

βs+1∥ξ(s)∥2 +
k∑

s=0

βs+1Eξ′(s)R2ξ(s)

⩽ EV (0) +

k∑
s=0

βs+1Eξ′(s)R3ξ(s), (16)

where R3 = R2 +
(
1− β−1

)
∥P∥IN−1.

Note that
(
1− β−1

)
∥P∥IN−1 > 0. Then, there exists β > 1 such that R3 < 0 if

R2 < 0. In this case, we can obtain from (16) that

βk+1EV (k + 1) ≤ EV (0).

We have λmin(P)∥ξ(k + 1)∥2 ⩽ V (k + 1), it follows that

λmin(P)βk+1E∥ξ(k + 1)∥2 ⩽ βk+1EV (k + 1) ⩽ EV (0).

Then, we have

E∥ξ(k + 1)∥2 ≤ EV (0)

λmin(P)βk+1
. (17)

Hence, one obtains that
lim
k→∞

E∥ξ(k + 1)∥2 = 0.
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This combining with the definition of ξ(k) and δ(k) implies

lim
k→∞

E

∥∥∥∥∥xj(k)−
1

N

N∑
m=1

xm(k)

∥∥∥∥∥
2

= 0. (18)

Therefore, mean square consensus will follow if R2 < 0.

Next, we prove that K̄ = k (Im +D′PD +B′PB)
−1

(B′PA+D′PC) under
condition (11) can assure R2 < 0. It can be seen that R2 can be reformulated as

R2 = diag
{(

A− λ2BK̄
)′ P (A− λ2BK̄

)
, · · · ,(

A− λNBK̄
)′ P (A− λNBK̄

)}
+diag

{(
C − λ2DK̄

)′ P (C − λ2DK̄
)
− P, · · · ,(

C − λNDK̄
)′ P (C − λNDK̄

)
− P

}
.

This is is equivalent to(
A− λiBK̄

)′ P (A− λiBK̄
)
+
(
C − λiDK̄

)′ P (C − λiDK̄
)
− P < 0, (19)

where i = 2, · · · , N . Substituting K̄ = k (Im +D′PD +B′PB)
−1

(B′PA+D′PC)
into (19), we can obtain that (19) can be ensured if

A′PA+ C ′PC − (2λik − λ2
i k

2) (A′PB + C ′PD)

× (Im +D′PD +B′PB)
−1

(B′PA+D′PC)− P < 0, (20)

where i = 2, · · · , N . Note that (11) implies (20). Now, the proof is completed.

Remark 4.2. From [25], we know that the mean square exponential stability of the
MAS (1) implies the almost sure exponential stability. Moreover, (17) implies mean
square exponential stability of the MAS (13). Hence, the MAS (1) can achieve both
mean square and almost sure consensus simultaneously under (10) and (11).

5. Optimal consensus. Based on the consensus result presented in the last sec-
tion, we are going to provide the optimal consensus control strategy to guarantee
mean square consensus and minimize the performance index simultaneously.

Firstly, define the following ARE

0 = A′PA+Q− P + C ′PC −H ′G†H, (21)

where H = B′PA + D′PC,G = R + B′PB + D′PD. For the convenience of the
following derivation, we denote

A = A−BG†H,B = B
(
I −G†G

)
, C = C −DG†H,D = D

(
I −G†G

)
.

Here, we assume that Range(H) ⊆ Range(G), i.e. regular case. For the optimal
control, we also define

Hγ(X) = A′XA+ C′XC + In

− γ (A′XB + C′XD) (Im + B′XB +D′XD)
−1

(B′XA+D′XC) .
The following theorem gives the optimal consensus control strategy.

Theorem 5.1. Assume that (21) has the solution P ≥ 0, and γ∗ = argminγ [∃P̂ >

0 | P̂ > Hγ(P̂)] ∈ (0, 1) is well defined. Then, for any γ ≥ γ∗, the optimal consensus
solution to minimize (2) is

ui(k) = −G†Hxi(k) +
(
I −G†G

)
zi(k), (22)
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where

zi(k) = K

N∑
j=1

aij (xj(k)− xi(k)) ,

K = k (Im +D′PD +B′PB)
−1

(B′PA+D′PC) ,

k satisfies (11), and P obeys P = Hγ(P).

Proof. Note that

E

{ ∞∑
k=0

(x′
i(k + 1)Pxi(k + 1)− x′

i(k)Pxi(k))

}

= E

{
lim
k→∞

xi(k + 1)′Pxi(k + 1)− xi(0)
′Pxi(0)

}
,

and

E [x′
i(k + 1)Pxi(k + 1)] = E[(Axi(k) +Bui(k) + Cxi(k)wk +Dui(k)wk)

′

P (Axi(k) +Bui(k) + Cxi(k)wk +Dui(k)wk)]

= E[x′
i(k) [A

′PA+ C ′PC]xi(k)

+x′
i(k) [A

′PB + C ′PD]u′
i(k)

+u′
i(k) [B

′PB +D′PD]ui(k)

+u′
i(k) [B

′PA+D′PC]x′
i(k)].

Substituting the above equalities into the cost function

Ji = E

∞∑
k=0

[x′
k(k)Qxi(k) + u′

k(k)Ruk(k)]

and using the MAS (1), we have

N∑
i=1

Ji =

N∑
i=1

E(

∞∑
k=0

[x′
i(k)Qxi(k) + u′

i(k)Rui(k) + x′
i(k + 1)Pxi(k + 1)

−x′
i(k)Pxi(k) +

N∑
i=1

E(x′
i(0)Pxi(0))−

N∑
i=1

E( lim
k→∞

x′
i(k)Pxi(k))

=

N∑
i=1

∞∑
k=0

E {x′
i(k) [Q− P +A′PA+ C ′PC]xi(k)

+x′
i(k) [A

′PB + C ′PD]ui(k) + u′
i(k) [B

′PB +D′PD +R]ui(k)

+u′
i(k) [B

′PA+D′PC]xi(k)}+
N∑
i=1

E{x′
i(0)Pxi(0)}

−
N∑
i=1

E

{
lim
k→∞

x′
i(k)Pxi(k)

}
.

Denote M1 =
∑N

i=1 E {x′
i(0)Pxi(0)} and M2 =

∑N
i=1 E {limk→∞ x′

i(k)Pxi(k)}.
Applying ARE (21), we have

N∑
i=1

Ji =

N∑
i=1

∞∑
k=0

E{x′
i(k)H

′G†Hxi(k) + x′
i(k)H

′ui(k)
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+u′
i(k)Gui(k) + u′

i(k)Hxi(k)}+M1 −M2

=

N∑
i=1

∞∑
k=0

E{[ui(k) +G†Hxi(k)]
′G[ui(k) +G†Hxi(k)]}+M1 −M2.

It can be verified that
∞∑
k=0

E{[ui(k) +G†Hxi(k)]
′G[ui(k) +G†Hxi(k)]}

=

∞∑
k=0

E
{
[ui(k) +G†Hxi(k)− (I −G†G)zi(k)]

′G[ui(k)

+G†Hxi(k)− (I −G†G)zi(k)]
}
, (23)

where zi(k) is an arbitrary vector with compatible dimension. Then, the opti-
mal controller is given by the first equation of (22) because of the positive semi-
definiteness of G. Substituting (22) into MAS (1), it yields that

xi(k + 1) = [Axi(k) + Bzi(k))] + [Cxi(k) +Dzi(k))]w(k). (24)

From Theorem 3.5, we have P = Hγ(P), which has the form (3) with A,B,C,D
being replaced by A,B, C,D, respectively.

Let X(k) = [x′
1(k), · · · , x′

N (k)]
′
, δi(k) = xi(k) − 1

N

∑N
i=1 xi(k)(i = 1, 2, · · · , N)

and δ(k) = [δ′1(k), · · · , δ′N (k)]
′
. By the similar procedures of Theorem 4.1, (24) can

be rewritten as

X(k + 1) = [IN ⊗A− L⊗ (BK)]X(k) + [IN ⊗ C − L⊗ (DK)]X(k)w(k).

We further obtain

δ(k + 1) = [IN ⊗A− L⊗ (BK)] δ(k) + [IN ⊗ C − L⊗ (DK)] δ(k)w(k).

Select a unitary matrix Ψ =
[

1N√
N
, ϕ2, · · · , ϕN

]
such that Ψ′LΨ = diag {0, λ2, · · · ,

λN}, where ϕi satisfies ϕ′
iL = λiϕ

′
i for i = 2, . . . , N . Let δ(k) = (Ψ⊗ In) δ̃(k) and

δ̃(k) =
[
δ̃′1(k), · · · , δ̃′N (k)

]′
. It yields that δ̃1(k) = 0 and

δ̃(k + 1) = [IN ⊗A− diag {0, λ2BK, · · · , λN × BK}]δ̃(k)
+ [IN ⊗ C − diag{0, λ2DK, · · · , λNDK}] δ̃(k)w(k).

Denote ξ(k) =
[
δ̃′2(k), · · · , δ̃′N (k)

]′
. Then, we have

ξ(k + 1) = [IN−1 ⊗A− ∧⊗ BK] ξ(k) + [IN−1 ⊗ C − ∧ ⊗DK] ξ(k)w(k), (25)

where ∧ = diag {λ2, · · · , λN}.
Similarly, denote V (k) = ξ′(k) (IN−1 ⊗ P) ξ(k). Taking the mathematical expec-

tation of EV (k + 1), we obtain

EV (k + 1) = E {ξ′(k) [R′
1 (IN−1P)R1 +M ′

1 (IN−1 ⊗ P)M1]ξ(k)} ,
and

EV (k + 1)− EV (k) = E {ξ′(k) [R′
1 (IN−1P)R1

+M ′
1 (IN−1 ⊗ P)M1 − IN−1 ⊗ P]ξ(k)} ,

where R1 = IN−1 ⊗A − ∧ ⊗ BK and M1 = IN−1 ⊗ C − ∧ ⊗ DK. Note that (11)
holds. It yields that

A′PA+ C′PC − (2λik − λ2
i k

2) (A′PB + C′PD)
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× (D′PD + B′PB)† (B′PA+D′PC)− P
< A′PA+ C′PC − γ (A′PB + C′PD)

× (Im +D′PD + B′PB)−1
(B′PA+D′PC) + In − P = 0.

Letting K̄ = k (Im +D′PD + B′PB)−1
(B′PA+D′PC), we can obtain(

A− λiBK̄
)′ P (A− λiBK̄

)
+
(
C − λiDK̄

)′ P (C − λiDK̄
)
− P < 0,

which can be reformulated as

R2 = diag
{(

A− λ2BK̄
)′ P (A− λ2BK̄

)
, · · · ,(

A− λNBK̄
)′ P (A− λNBK̄

)}
+diag

{(
C − λ2DK̄

)′ P (C − λ2DK̄
)
, · · · ,(

C − λNDK̄
)′ P (C − λNDK̄

)}
< 0.

Then, similar to the derivation process of Theorem 4.1, we can obtain that mean
square consensus can be achieved for the MAS (1).

In addition, letting zi(k) =
1
N

∑N
i=1 xi(k), where z(0) = 1

N

∑N
i=1 xi(0), we have

z(k + 1) = Ay(k) + Cz(k)w(k).

Denote Ṽ (k) = E [z′(k)Pz(k)] ≥ 0, where P satisfies ARE (21). Then, we obtain

Ṽ (k + 1)− Ṽ (k) = E [z′(k) (A′PA+ C′PC − P ) z(k)]

= E
{
z′(k)

[
−Q−G′H†RH†G

]
z(k)

}
≤ 0,

which implies

lim
k→∞

Ṽ (k) = lim
k→∞

E [z′(k)Pz(k)] = θ,

where θ ≥ 0 is a constant. The consensus value of MAS (1) is given by (18), which
shows that

lim
k→∞

E [x′
i(k)Pxi(k)] = lim

k→∞
E [z′(k)Pz(k)] = θ.

Thus, the optimal value is given by

N∑
i=1

Ji =

N∑
i=1

E [x′
i(0)Pxi(0)]− θN.

6. Simulation example. Consider the MAS (1) and the cost function (2) with
A,B,C,D,Q,R as follows:

A =

[
2 0
1 0

]
, B =

[
2.5 0
0 0.5

]
, C =

[
0.5 0
0 0.5

]
,

D =

[
0 0
0 0

]
, Q =

[
0 0
0 0

]
, R =

[
0 0
0 1

]
,
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Figure 1. The trajectory of E||xi(k) − x1(k)||2 and E||yi(k) −
y1(k)||2, i = 2, 3, 4.

which satisfy Range(H) ⊆ Range(G). Consider G = {V,M}, where V = {1, 2, 3, 4}
and

M = [aij ]4×4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

Further we obtain the Laplacian matrix

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


and its eigenvalues: λ1 = 0, λ2 = 2, λ3 = 2, λ4 = 4. Let initial values x1(0) =[
5.59 1.16

]′
, x2(0) =

[
4.57 −1.10

]′
, x3(0) =

[
0.79 −1.28

]′
, x4(0) =[

−5.24 −1.04
]′
.

Letting γ = 0.86 > γ∗ = 0.75, one can calculate that P =

[
15.1473 0
0 1.3333

]
,

P =

[
0 0
0 0

]
by solving (3) and (21). We have

A =

[
2 0
1 0

]
,B =

[
2.5 0
0 0

]
,

C =

[
0.5 0
0 0.5

]
,D =

[
0 0
0 0

]
.

Therefore, the condition of Theorem 5.1 is satisfied and the optimal consensus
control is

ui(k) =

[
1 0
0 0

]
K

4∑
j=1

aij (xj(k)− xi(k))

with K = k

[
0.7916 0

0 0

]
, where k ∈ [0.29, 0.35]. Denote xa

i (k), x
b
i (k) as the first

and second components of xi(k), respectively. As shown in Figure 1, Figure 2,
Figure 3 and Figure 4, the mean square consensus and almost sure consensus of the
system are achieved.
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Figure 2. The trajectory of |xi(k)− x1(k)| and |yi(k)− y1(k)|, i = 2, 3, 4.

7. Conclusions. In this work, we consider the optimal consensus control of discrete-
time MASs with multiplicative noise. Based on two Riccati equations, the sufficient
condition for optimal consensus are given respectively. In our future research, we
are going to investigate the optimal consensus corrupted by both communication
latency and multiplicative noise simultaneously. The coexistence of additive and
multiplicative noise will also be studied. The optimal control with unknown mean
and variance of multiplicative noise is also an interesting problem [30].
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